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Chaotic dynamics of cold atoms in far-off-resonant donut beams

X. M. Liu and G. J. Milburn
The Center for Laser Sciences, Department of Physics, The University of Queensland, St. Lucia, Brisbane, Queensland 4072,

~Received 9 September 1998!

We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut
beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the
beam is periodically modulated. The two-dimensional distributions of atoms in the (x,y) plane for charge 2 are
simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of
global chaos.@S1063-651X~99!03903-3#
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I. INTRODUCTION

The Laguerre-Gaussian beams~donut beams! carry orbital
angular momentum associated with a helical surface of c
stant phase and have recently been the subject of cons
able theoretical and experimental study@1–7#. Many of these
studies concern the transfer of orbital angular momentum
the beam to small particles and atoms@1#. With the develop-
ment of laser cooling and trapping of neutral atoms, vario
schemes to slow the atomic motion, and increase the ato
intensity, have been proposed and some demonstrated.
far-off-resonant laser beam it is possible to observe the
tial variation of the optical dipole force on slow atoms.
this case the atom experiences an effective mechanica
tential proportional to the intensity of the beam. Such forc
can be used to trap cold atoms and recently Gauss
Laguerre modes were used to trap atoms@6#.

The degree of nonlinearity of the optical potential in
donut beam is characterized by the ‘‘charge’’ of the don
The charge is an integer characterizing the phase singul
of the beam on axis. It also determines the variation of
intensity off-axis in the transverse plane. In the case of u
charge the intensity close to the axis varies quadratic
with the radial distance in the transverse plane. For a cha
greater than unity the variation of intensity is a quartic,
higher, power of the radical distance and thus the resul
motion near the beam axis is nonlinear. In this case the
quency of bound oscillatory motion near the axis depends
the energy of the atom. As the energy increases, the
quency decreases, eventually falling to zero as the unst
fixed point at the potential maximum is reached. If such
nonlinear system is driven by a periodic modulation of t
potential, regions of chaotic orbits can result@11#. In this
paper we will consider the motion of cold atoms in the
tensity modulated Laguerre-Gaussian beam and discus
classical two-dimensional chaotic dynamics for chargel
52.

II. LAGUERRE-GUASSIAN „LG … BEAM
AND DONUT BEAM

The field of a linearly polarized LG beam in cylindrica
coordinates, (r ,f,z), is @3#
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E~r !5ex

C

11z2/ZR
2 S rA2

w~z!
D u l u

Lq
u l uS 2r 2

w2~z!
D

3exp„2r 2/w2~z!…expS ikr 2z

2~z21zR
2 !

D
3exp@ i l f#exp@ i ~2q1 l 11!tan21~z/zR!#exp~ ikz!,

~1!

where zR5pw0
2/l,w2(z)5l(z21zR

2)/pzR5n2m and q
5min(n,m) for the Em,n

LG mode.
We are concerned here with the donut beam, because

the easiest way to form an optical trap in the transve
plane. In this caseq50 and thereforeL0

u l u()50. In reality,
Eq. ~1! can be greatly simplified because in generalz!zR
andw(z).w0 .

The new expression of the electric field of the donut be
is

E~r !5exCS rA2

w0
D u l u

exp~2r 2/w0
2!exp@ i l f#exp~ ikz!, ~2!

wherel is the topological charge of singularity, which can b
positive or negative. Each photon in a linearly polarized d
nut beam carriesLz5 l\ orbital angular momentum. The in
tensity distribution of the beam whenq50 is given by@6#

I ~r !5W
2u l u11r 2u l u

pu l u!w0
2~ u l u11!

exp@22r 2/w0
2#, ~3!

whereW is the power of a laser.

III. CHAOTIC DYNAMICS OF COLD ATOMS
IN FAR-OFF-RESONANCE DONUT BEAMS

Spontaneous emission for cold atoms in far-off-reson
donut beams can be ignored. The interaction with the li
field is then almost perfectly Hamiltonian. The effective o
tical potential for a two-level atom@8# has the form

U~r !5
\D

2
ln~11p!, ~4!
2842 ©1999 The American Physical Society
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whereD is the detuning andp5V2/2/D21G2/4 is a satura-
tion parameter, with the Rabi frequencyV. For far-off-
resonant donut beams,p!1, and thus

U~r !5
\V~r !2

4D
. ~5!

Taking into account the special variation of the Rabi f
quency, the classical Hamiltonian in the (x,y) plane for the
system is

H05
px

21py
2

2M
1K~ l !~x21y2! lexpS 22

x21y2

w2 D , ~6!

whereK( l )5(\V0
2/2D)(2l / l !w0

2l) and V05GAW/2pw0
2I s;

I s is the saturation intensity. In the case of rubidium,I s
52 mW/cm2.

When the Rabi frequency is modulated,V0 becomes time
dependent,V0A11e cos(vt), and the dynamics of the atom
can be chaotic for certain initial conditions. The effecti
optical potential depends on the charge,l, of the donut. The
larger the value ofl, the more anharmonic is the potential o
axis. Forl 51, the potential is approximately quadratic ne
the axis, and the unperturbed motion of an atom is harmo
In that case no chaotic orbits will occur when the potentia
modulated in time. If, however, the atom has a larger kine
energy so that it is moving in a region far from the axis a
can explore the nonlinear parts of the potential, we exp
the dynamics to became chaotic. Whenl .1, the dynamics is
nonlinear over the whole potential range and the amplit
of the modulation is easier to control as the potential is wi
and flatter.

For simplicity we discuss thel 52 case~Fig. 1! and we
take rubidium as a particular example to set the parame
for our simulation. The parameters for rubidium are lin
width G/2p56 MHz, massM585mp , the beam waist of
laserw05140 mm, laser powerW5600 mW/cm2, and the
detuning D/2p56 GHz. We now define dimensionles
parameters (x,y)5( x̃,ỹ)5(x/w,y/w),(px̃,pỹ)5(px /PD ,
py /PD), and H̃5H/2ED and t̃ 5t/(w/M PD), where ED

5PD
2 /2M is the Doppler limit energy andPD is the momen-

FIG. 1. The relative intensity of a donut beam for chargel 52,
wherew is the beam waist.
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tum, respectively. Omitting the tildes and definingj
5\V2/2DED , for chargel 52, the Hamiltonian can be re
written as

H~ t !5
px

21py
2

2
1j~ l !~x21y2!2e22~x21y2!~11e cosvt !,

~7!

wherej'0.887. Using Hamilton’s equations we find that th
motion in the transverse plane without modulation (e50) is
described by the equations

ṗx524jxr2~12r 2!e22r 2
, ~8!

ṗy524jyr2~12r 2!e22r 2
, ~9!

ẋ5px , ~10!

ẏ5py , ~11!

where r 25x21y2. Clearly there are two fixed points: on
stable fixed point on axis (r 50), and one unstable fixed
point at the intensity maximum (r 51).

The choice of modulation frequencyv depends on the
frequency of unperturbed periodic motion. For simplicity w
assumey50 andpy50, so the expression forH simplifies to
a one-dimensional Hamiltonian system. The period of m
tion for the unperturbed HamiltonianH0 is @9#

T5 R dx

]H0 /]px
52E

2xM

xM dx

A2@H02jx2exp~22x2!#
,

~12!

wherexM is determined byH05jxM
2 exp(22xM

2 ). Therefore

v05
p

E
2xM

xM

$2@H02jx2 exp~22x2!#%21/2dx

. ~13!

FIG. 2. The relations between frequency of motion and Ham
tonianv0;H0 andxM;H0 .
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The graph ofv versusH0 andxM versusH0 is shown in Fig.
2. We can select the modulation frequencyv to control the
position of the fixed points. Here we set the dimensionl
modulation frequency,v54.34, which corresponds t
3.67 KHz.

We use a symplectic integration routine@10,11# to solve
the equations of motion so as to preserve the Poisson bra
relation $x(t),px(t)%51, and thus maintain the Hamiltonia
character of the motion. In Figs. 3–5 we plot the strob
scopic portrait of the system at timest5(2p/v)s, wheres is
an integer referred to as the strobe number. From Figs.
we can see that regions of chaotic motion will arise ase is
increased, together with some regular regions. A broad in
phase space distribution of atoms will enable some atom
become trapped in these stable regions.

Laser cooling and trapping techniques have the ability
cool the atom to very low velocities and trap them with w
localized momentum, however the position distribution
not so well localized. Therefore the appropriate descript
of the initial conditions is in terms of a probability density o
phase space (x,y,px ,py). We define a classical state to be

FIG. 3. Stroboscopic portrait of the system withe50, px(0)
50, py50, andy50. The maximum strobe number is 500.

FIG. 4. Stroboscopic portrait of the system withe50.5, px(0)
50, py50, andy50. The maximum strobe number is 500.
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probability measure on phase space of the fo
Q(x,y,px ,py)dxdydpxdpy . The probability density satis
fies the Liouville equation

]Q

]t
5$H,Q%qi ,pi

, ~14!

where $,%qi ,pi
is the Poisson bracket. This equation can

solved by the method of characteristics. To simulate an
periment, we assume atoms are initially uniformly distri
uted on theuxu,C anduyu,C region, whereC is a constant
chosen to ensure the major fixed points are included.
momentum distributions forpx and py are assumed to be
Gaussian distributions. Therefore

Q0~x,y,px ,py!5Q0~x!Q0~y!Q0~px!Q0~py!, ~15!

where

FIG. 6. The atomic distribution in (x,y) plane at the strobe
number 50 fore50. The 10 000 points were taken in phase spa
The atoms were initially distributed onuxu<0.3 anduyu<0.3 re-
gion. The momenta ofpx ,py are Gaussian distributions andspx

5spy
50.05.

FIG. 5. Stroboscopic portrait of the system withe50.7, px(0)
50, py50, andy50. The maximum strobe number is 500.
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Q0~pi !5
1

2pspi

exp$2@px2px~0!#2/2spi
%. ~16!

The variances ofpx andpy are related to the temperatureTi ,

spi
5MkBTi /PD

2 . ~17!

Two-dimensional symplectic integrators@10# are used to pre-
serve the Poisson bracket relations during computation,

$qi ,pj%5d i j . ~18!

In Fig. 6 we show the case for no modulation. In this ca
atoms will accumulate around the fixed pointx5y50 ~see
Fig 3!. When the modulation is added, the atoms will diffu
in regions of chaotic motion but some will accumula
around several rings corresponding to fixed points at nonz
radius. With the increase of modulation amplitude, more
oms accumulate around rings and fewer atoms aroundx5y
50 ~Figs. 7 and 8!. In our simulations the variancesspx

and

spy
are taken to be 0.05, which corresponds to temperat

FIG. 7. The atomic distribution in (x,y) plane at the strobe
number 50 fore50.5. The 10 000 points were taken in phase spa
The atoms were initially distributed onuxu<0.3 anduyu<0.3 re-
gion. The momenta ofpx ,py are Gaussian distributions andspx

5spy
50.05.
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at approximately the recoil cooling limit. As the varianc
decreases~lower temperature! the radial rings become
clearer.

IV. CONCLUSION AND DISCUSSION

We have shown that an atom moving in an intens
modulated far-off-resonance donut beam can exhibit cha
dynamics in the transverse plane. For atomic momentapx ,py
with Gaussian distributions, some atoms will becom
trapped in rings corresponding to radial fixed points of t
modulated system. If at some moment the optical potentia
withdrawn, atoms will expand freely and the spatial structu
of the rings will persist because the momentum is symme
in (x,y). Therefore the two dimensional radial atomic dist
bution in (x,y) can be detected using standard time of flig
techniques.
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FIG. 8. The atomic distribution in (x,y) plane at the strobe

number 50 fore50.7. The 10 000 points were taken in phase spa
The atoms were initially distributed onuxu<0.3 anduyu<0.3 re-
gion. The momenta ofpx ,py are Gaussian distributions andspx

5spy
50.05.
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