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Chaotic dynamics of cold atoms in far-off-resonant donut beams
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We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut
beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the
beam is periodically modulated. The two-dimensional distributions of atoms irxtlg plane for charge 2 are
simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of
global chaos[S1063-651X99)03903-3
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angular momentum associated with a helical surface of con- I
; : ikrez
stant phase and have recently been the subject of consider- Xexp(—rzlwz(z))exp( —)
able theoretical and experimental stidy-7]. Many of these 2(22+73)

studies concern the transfer of orbital angular momentum of . . _ .
the beam to small particles and atofi$ With the develop- xexil ¢lexdi(2q+1 + Ltan *(2/zg) Jexplik2),

ment of laser cooling and trapping of neutral atoms, various 1)
schemes to slow the atomic motion, and increase the atomic

intensity, have been proposed and some demonstrated. Invédere zg= mW3IN,W2(2) =N (Z2+ 28)/ mzg=n—m and q
far-off-resonant laser beam it is possible to observe the spa= min(n,m) for the E,';fn mode.

tial variation of the optical dipole force on slow atoms. In  We are concerned here with the donut beam, because it is
this case the atom experiences an effective mechanical pdhe easiest way to form an optical trap in the transverse
tential proportional to the intensity of the beam. Such forcesplane. In this casg=0 and therefore.}/()=0. In reality,

can be used to trap cold atoms and recently Gaussiarkg. (1) can be greatly simplified because in generalzg
Laguerre modes were used to trap atdls andw(z) =wg.

The degree of nonlinearity of the optical potential in a The new expression of the electric field of the donut beam
donut beam is characterized by the “charge” of the donut!S
The charge is an integer characterizing the phase singularity
of the beam on axis. It also determines the variation of the
intensity off-axis in the transverse plane. In the case of unit
charge the intensity close to the axis varies quadratically
with the radial distance in the transverse plane. For a chargeherel is the topological charge of singularity, which can be
greater than unity the variation of intensity is a quartic, orpositive or negative. Each photon in a linearly polarized do-
higher, power of the radical distance and thus the resultingiut beam carries ,=1#% orbital angular momentum. The in-
motion near the beam axis is nonlinear. In this case the fretensity distribution of the beam when=0 is given by[6]
guency of bound oscillatory motion near the axis depends on
the energy of the atom. As the energy increases, the fre- 2l+1 20
guency decreases, eventually falling to zero as the unstable IU)ZWW
fixed point at the potential maximum is reached. If such a o
nonlinear system is driven by a periodic modulation of thewhereW is the power of a laser
potential, regions of chaotic orbits can resiitl]. In this '
paper we will consider the motion of cold atoms in the in-
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E(r)=exC< ) exp( —r2/w3)exil plexpikz), (2)

exqd — 2r2/w3], (3)

tensity modulated Laguerre-Gaussian beam and discuss the  !ll. CHAOTIC DYNAMICS OF COLD ATOMS
classical two-dimensional chaotic dynamics for chatge IN FAR-OFF-RESONANCE DONUT BEAMS
=2.

Spontaneous emission for cold atoms in far-off-resonant
donut beams can be ignored. The interaction with the light
field is then almost perfectly Hamiltonian. The effective op-

Il. LAGUERRE-GUASSIAN (LG) BEAM tical potential for a two-level atorf8] has the form
AND DONUT BEAM

The field of a linearly polarized LG beam in cylindrical

hA
coordinates, I, ¢,2), is [3] U(r)=—-In(1+p), (4)
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FIG. 1. The relative intensity of a donut beam for charge2,
wherew is the beam waist. s ) . . . \
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whereA is the detuning ang=Q?/2/A%+T%/4 is a satura-
tion parameter, with the Rabi frequendy. For far-off- FIG. 2. The relations between frequency of motion and Hamil-
resonant donut beamp<1, and thus tonianwo~Ho andxy ~Hp.
5 O(r)2 tum, respectively. Omitting the tildes and defining
(r)= (r) _ (5) =hQO2%2AEy, for chargel =2, the Hamiltonian can be re-
4A written as
2 2
Taking into account the special variation of the Rabi fre- Px* Py 24 y2)2a—20x2+y?)

. U = + + + ,
guency, the classical Hamiltonian in the,y¥) plane for the H(Y) 2 §hO+y9)%e (1+ € cosut)
system is (7)

whereé~0.887. Using Hamilton's equations we find that the
©6) motion in the transverse plane without modulati@s(Q) is
' described by the equations

x2+y?
2

2, 2
HoszZMpy +K(I)(x2+y2)'exp( -2

w
2101 (912 py=—4éxr¥(1-r?)e 2", ®
whereK(1)=(AQu/2A)(2'/1Twg) andQO=F\/W/27rW02I ;
I is the saturation intensity. In the case of rubidiulyg, . o2
=2 mwient. / A py=—4éyr¥(1-r?e 2", 9
When the Rabi frequency is modulatédl, becomes time )
dependent(),/1+ € cost), and the dynamics of the atom X= Py (10)
can be chaotic for certain initial conditions. The effective _
optical potential depends on the charfegf the donut. The y=py, (12

larger the value of, the more anharmonic is the potential on
axis. Forl =1, the potential is approximately quadratic nearwherer?=x?+y?. Clearly there are two fixed points: one
the axis, and the unperturbed motion of an atom is harmonictable fixed point on axisr&0), and one unstable fixed
In that case no chaotic orbits will occur when the potential ispoint at the intensity maximunr &1).
modulated in time. If, however, the atom has a larger kinetic The choice of modulation frequenay depends on the
energy so that it is moving in a region far from the axis andfrequency of unperturbed periodic motion. For simplicity we
can explore the nonlinear parts of the potential, we expechssumey=0 andp,=0, so the expression fét simplifies to
the dynamics to became chaotic. WHenl, the dynamicsis a one-dimensional Hamiltonian system. The period of mo-
nonlinear over the whole potential range and the amplitudeion for the unperturbed Hamiltonia, is [9]
of the modulation is easier to control as the potential is wider
and flatter. dx XM dx

For simplicity we discuss the=2 case(Fig. 1) and we T= fﬁ —=2] ,
take rubidium as a particular example to set the parameters Mol 7p —xuV2[Ho— éx’expl — 2x%)]
for our simulation. The parameters for rubidium are line- (12
width I'/2m=6 MHz, massM =85m,, the beam waist of
laserw,=140 um, laser powelW=600 mW/cnt, and the
detuning A/27=6 GHz. We now define dimensionless

parameters  X,y) = (X,y) = (x/w,y/w),(py, py) = (Px/Pp wo=

p,/Pp), and H=H/2Ep and t=t/(w/MPp), where Ep JXM [2[Ho— &x2 expt — 2x) |}~ Y2dx
= PZD/ZM is the Doppler limit energy anBp is the momen- XM

wherexy, is determined byHy= £x2 exp(—2x%). Therefore

m

(13
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FIG. 3. Stroboscopic portrait of the system wik0, p,(0) FIG. 5. Stroboscopic portrait of the system wih-0.7, p,(0)
=0, p,=0, andy=0. The maximum strobe number is 500. =0, py=0, andy=0. The maximum strobe number is 500.

The graph ofw versusH, andx,, versusH, is shown in Fig.  Probability measure on phase space of the form
2. We can select the modulation frequenayto control the ~ Q(%Y.Px,py)dxdydpdp, . The probability density satis-
position of the fixed points. Here we set the dimensionlesd®S the Liouville equation
modulation frequency,w=4.34, which corresponds to
3.67 KHz.

We use a symplectic integration routifit0,11] to solve
the equations of motion so as to preserve the Poisson bracket

relation{x(t),px(1)}=1, and thus maintain the Hamiltonian where{,}, , is the Poisson bracket. This equation can be

chargcter tOf {hef trrr:otlont. In Ft'?s't;_g v>/e plot rt]he St.rObo'soIved by the method of characteristics. To simulate an ex-
sco.p|tc por ra:( 0 detsys ethm atm;, ( Wb“’)s’FW erE_S|s 3 eriment, we assume atoms are initially uniformly distrib-
an integer relerred 1o as the Strob€ NUMoEr. =rom FIgs. S—gyaq op thgx|<C and|y|<C region, whereC is a constant

we can see that regions of chaotic motion will anseeds chosen to ensure the major fixed points are included. The
increased, together with some regular regions. A broad initi omentum distributions fop, and p, are assumed to be
phase space distribution of atoms will enable some atoms 18 Jussian distributions Theréfore y

become trapped in these stable regions.

Laser cooling and trapping techniques have the ability to
cool the atom to very low velocities and trap them with well Qo(X.¥:Px Py) = Qo(X) Qu(Y) Qo(Px) Qo(Py).
localized momentum, however the position distribution is
not so well localized. Therefore the appropriate descriptiovhere
of the initial conditions is in terms of a probability density on
phase spacex(y,py,py). We define a classical state to be a 0.3

1%
(9_?:{H1Q}qi,piv (14

(15
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FIG. 6. The atomic distribution inx,y) plane at the strobe
number 50 fore=0. The 10 000 points were taken in phase space.
The atoms were initially distributed ofx|<0.3 and|y|<0.3 re-

FIG. 4. Stroboscopic portrait of the system with 0.5, p,(0) ~ gion. The momenta ofy,p, are Gaussian distributions ang},
=0, py=0, andy=0. The maximum strobe number is 500. :a'py:0.0S.
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FIG. 7. The atomic distribution inx(y) plane at the strobe FIG. 8. The atomic distribution inx,y) plane at the strobe
number 50 fore=0.5. The 10 000 points were taken in phase spacenumber 50 fore=0.7. The 10 000 points were taken in phase space.
The atoms were initially distributed ofx|<0.3 and|y|<0.3 re- The atoms were initially distributed ojx|<0.3 and|y|<0.3 re-
gion. The momenta op,,p, are Gaussian distributions anrjpx gion. The momenta op,,p, are Gaussian distributions am:{Jx

= 0p,=0.05. =0 =0.05.

1 at approximately the recoil cooling limit. As the variance
Qo(pi) = Z—GXD{—[DX—DX(O)]Z/Z%.}- (16)  decreases(lower temperature the radial rings become
’7T i

Op, clearer.
The variances op, andp, are related to the temperaturg, IV. CONCLUSION AND DISCUSSION
Gp_:MkBTi/p%. (17) We have shown that an atom moving in an intensity
' modulated far-off-resonance donut beam can exhibit chaotic

dynamics in the transverse plane. For atomic momppip,
with Gaussian distributions, some atoms will become
trapped in rings corresponding to radial fixed points of the
{ai,p;}= 8. (189 ~ modulated system. If at some moment the optical potential is
withdrawn, atoms will expand freely and the spatial structure
In Fig. 6 we show the case for no modulation. In this caseof the rings will persist because the momentum is symmetric
atoms will accumulate around the fixed po)n;t:yzo (See in (X,y). Therefore the two dimensional radial atomic distri-
Fig 3). When the modulation is added, the atoms will diffusebution in (x,y) can be detected using standard time of flight
in regions of chaotic motion but some will accumulate techniques.
around several rings corresponding to fixed points at nonzero
radius. With the increase of modulation amplitude, more at-
oms accumulate around rings and fewer atoms arouny Dr. S. Dyrting at Hong Kong University of Science and
=0 (Figs. 7 and & In our simulations the variances, and  Technology gave one of the auth@¥M.L.) helpful advice
op, are taken to be 0.05, which corresponds to temperaturesbout two-dimensional symplectic integrators.

Two-dimensional symplectic integratdrk0] are used to pre-
serve the Poisson bracket relations during computation,
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